Смазочные материалы, легированные нанопорошками


В ряде работ [1 - 10], указанных ниже, представлены результаты исследования по применению нанопорошков мягких металлов в смазочных композициях. Для исследований использовались электровзрывные нанопорошки меди, цинка и латуни (сплав ЛС 59-1Л, состав 57 - 60% масс. Cu, 0,8 - 0,9% масс. Pb, остальное цинк).

Проведенные эксперименты показывают, что износ детали трения и коэффициент трения зависят как от вида нанопорошка, так и от твердости поверхности детали трения (табл. 1). Из представленных данных следует, что величина износа зависит от того, какая из деталей трения была подвергнута термообработке (закалка до твердости 58 HRC): подвижный вал или неподвижные колодки.

Таблица 1 - Данные сравнительных испытаний масла И-20 легированного нанопорошками
table1.JPG


Ex1.JPG
Рис. 1. Профили 2D детали трения (колодки) после проведения трибологически испытаний: 1 - чистое масло И - 20, 4 - масло И - 20 + 0,3% масс. нанопорошка латуни

При термообработке вала износ колодки снижает в ряду нанопорошков Zn - Cu. При термообработке колодок незначительное снижение износа наблюдалось только на нанопорошках Zn и латуни. Профиль колодки после проведения испытаний при термообработке вала изображен на рис. 1.
Вероятно, образование плакирующих слоев на поверхности тела трения обусловлено механическими процессами внедрения наночастиц в поверхностные слои колодки, которые в свою очередь определяются твердостью поверхностных слоев. В приповерхностных слоях трущихся деталей было обнаружено присутствие элементов меди и цинка до глубины 0,2 мкм с неравномерным расположением по поверхности.
Износ деталей трения также связан с природой базового масла. В табл. 2 приведены данные противоизносных испытаний в масле А-8, проведенных в Омском танковом институте. Из данных таблицы следует, что наименьший износ деталей трения наблюдается при легировании масла порошком меди.
Испытания при ступенчатом повышении нагрузки показывают снижение величины коэффициента трения по мере увеличения нагрузки (рис. 2).

Таблица 2 - Противоизносные испытания в масле А-8
table2.JPG

Ex2.JPG
Рис. 2. Зависимость коэффициента трения (f) от продолжительности проведения испытаний при различных нагрузках (F)
Ex3.JPG

Рис. 3. Зависимость износа детали трения в среде масла И-20 и масла И-20,
легированного нанопорошками меди (Cu), латуни (Cu-Zn), цинка (Zn)

Наименьший коэффициент трения наблюдается при использовании нанопорошков меди и латуни, при нагрузках около 800 Н. Существенного понижения коэффициента трения при применении нанопорошков цинка не происходит. Тем не менее, снижение износа детали трения наблюдается при применении нанопорошков всех указанных металлов (рис. 3).

Данные противозадирных испытаний, проведенных в Томском государственном архитектурно - строительном университете, представлены в табл. 3. Введение в масло нанопорошков металлов увеличивает значение нагрузки схватывания на всех испытанных составах. Наиболее эффективно применение нанопорошков меди, величина нагрузки схватывания возросла в 1,83 раза.

Таблица 3 - Данные противозадирных испытаний
table3.JPG
Испытания общего уровня вибрации подшипников 180307, заполненных различными видами смазок, в том числе и легированных нанопорошками, проводились в заводской лаборатории ОАО «Ролтом», г. Томск. Измеряемой характеристикой являлась величина относительного уровня вибрации подшипника θ = θ2/ θ1, где θ1 - уровень вибрации «открытого» (т. е. не заполненного смазкой) подшипника (дб), θ2 - уровень вибрации подшипника заполненного смазкой (дб).
table4.JPG
Из результатов испытаний (табл. 4) следует, что наибольшее понижение уровня вибрации наблюдается на подшипниках, заполненных смазкой ЛЗ-31 с нанопорошком сплава свинец-олово и смазкой Литол-24 с нанопорошком меди.
Испытания смазки Ровел Резьбовая, Литол-24, легированной нанопорошками меди и цинка, проведенные на ОАО "Пермский завод смазок и СОЖ", показали следующее. Если нормальная нагрузка сваривания (Рс) для базовой смазки составляет 668 кгс, то при введении порошка меди Рс > 1000 кгс, цинка Рс = 800 кгс.
Присадки к моторным маслам на основе электровзрывных нанопорошков меди, латуни и цинка доведены до товарного уровня и выпускаются мелкосерийными партиями под торговым названием «Гарант-М».

Выводы:

1. Смазочные среды, состоящие из масел с добавками нанопорошков меди, латуни и цинка обеспечивают противоизносные свойства пары трения сталь-сталь в условиях высокой нагрузки лучше, чем товарные масла. Введение нанопорошков в товарные масла позволяет несколько улучшить антифрикционные свойства базового масла. Снижение величин износа и коэффициента трения определяется типом применяемого базового масла, нанопорошка и твердостью детали трения.
2. Улучшение противоизносных и антифрикционных свойств пары трения после введения в базовое масло добавок нанопорошков вероятно происходит за счет образования на поверхности и внедрения в приповерхностные слои детали трения частиц нанопорошков.
3. Перспективным направлением улучшения характеристик товарных смазочных составов является применение нанопорошков для легирования консистентных смазок.

Литература

1. Пат. RU 2063417 C1. Восстанавливающий смазочный материал, содержащий порошки металлов / Ильин А. П., Лернер М. И., Давыдович В.И.. - 5057106/92; Заявлено 29.07. 1992; Опубл. 10.07.1996.

2. Тарасов С. Ю., Беляев С. А., Колубаев А. В., Лернер М. И. Модификация поверхностей трения добавками нанопорошков меди в жидкую смазку // Материаловедение, технологии и экология на рубеже веков. Сб. Материалов Всероссийской конференции молодых ученых 5 - 8 декабря 2000. - Томск, 2000. - С. 251 - 254.

3. Беляев С. А., Тарасов С. Ю., Колупаев А. В., Лернер М. И. Повышение эффективности смазочного действия путем добавления нанопорошков металлов в масло // Международная научно-техническая конференция, посвященная памяти генерального конструктора аэрокосмической техники, академика Н.Д. Кузнецова. Сборник трудов. - Самара, 2001. - Ч.2. - С. 204 - 211.

4. Беляев С. А., Тарасов С. Ю., Лернер М. И., Колубаев А. В. Использование добавок нанопорошков меди и латуни в жидкой смазке. // Материалы Международной научно-технической конференции "Надежность машин и технических систем" 16 - 17 октября 2001 г. - Минск, 2001. - Т.2. - С. 19 -20.

5. Tarasov S., Kolubaev A., Belyaev S., Lerner M., Tepper F. Study of friction by nanocopper additives to motor oil // Wear. - 2002. - 252. - Р. 63-69.

6. Беляев С. А., Тарасов С. Ю., Лернер М. И. Трение, изнашивание и деформация поверхностных слоев конструкционной стали в присутствии нанокристаллических порошков в жидкой смазке. // Материалы 4-ой Международной научно-технической конференции, посвященной 60-летию ОмГТУ. Омск, 12-14 ноября 2002 г. - Омск, 2002. - С.100 - 102.

7. Беляев С. А., Тарасов С. Ю., Лернер М. И. Влияние присадок нанопорошков мягких
металлов в минеральном масле на трение и изнашивание. // Сборник трудов 1-ой Международной конференции «Современные проблемы машиностроения и приборостроения» 24 - 28 сентября 2002 г. - Томск, 2002. - С. 38-39.

8. Сваровская Н. В., Журавков C. П., Лернер М. И. Применение нанопорошков металлов в пластичных смазках // I Всероссийская конференция «Химия для автомобильного транспорта» 27-30 октября 2004 г. - Новосибирск, 2004. - С. 145.

9. Беляев С.А., Тарасов С.Ю., Лернер М.И. Механическое легирование конструкционной стали добавками нанопорошков цинка, меди и медного сплава // Материалы 5-ой Международной научно-технической конференции, посвященной 60-летию ОмГТУ, 16-18 ноября 2004 г. - Омск, 2004. - С. 193 - 197.

10. Тарасов С. Ю., Беляев С. А., Лернер М. И. Износостойкость конструкционной стали в смазочной среде, содержащей нанопорошки меди, латуни и цинка // Металловедение и термическая обработка металлов. - 2005. - № 12. - С. 31 - 36.
Мы предлагаем нашим партнерам:
  • Индивидуальный подход к заказу
  • Научно-технологическое сотрудничество
  • Систему скидок
  • Доставку продукции
Новости