нанопорошок Никеля (Ni)

никель_.jpg

ОБРАЗЕЦ СЕРТИФИКАТА

Разработан компанией ООО «ПЕРЕДОВЫЕ ПОРОШКОВЫЕ ТЕХНОЛОГИИ», Россия. Соответствует ТУ 1791-003-36280340-2008

ИДЕНТИФИКАЦИЯ ПРОДУКТА

ЭТИКЕТКА ИДЕНТИФИКАЦИИ: торговое наименование: НАНОПОРОШОК НИКЕЛЯ; химическая формула: Ni. Нанопорошок получен методом электрического взрыва проводника в атмосфере аргона и упакован в стеклянные ампулы в инертной атмосфере.

ХИМИЧЕСКИЙ СОСТАВ

Порошок содержит не менее 99,8 % масс. металлического никеля. Элементный состав материала: Ni = 99,758%, Mg = 0,041%, Al = 0,058%, Si = 0,049%, S = 0,005%, Ti = 0,010% Fe = 0,047%, Co = 0,032%. Интенсивности максимумов примесных элементов небольшие по сравнению с пиками изотопов никеля, что указывает на высокую чистоту порошка. Химический состав определялся путем элетроннозондового микроанализа при Z>10 и пороге чувствительности 0,1-0,05 % отн., при этом в порошке не обнаружено примесей. Кислород не обнаружен при 20 измерениях с порогом чувствительности ≥ 0,5% масс. Содержание кислорода, определенное при импульсом восстановительном плавлении в потоке инертного газа (гелий) с использованием эталона - стали с 0.172 % масс. кислорода, составило 0.6% масс.

ФИЗИЧЕСКИЕ И ХИМИЧЕСКИЕ СВОЙСТВА

Внешний вид и цвет: порошок темно-серого цвета. Форма отдельных частиц сферическая. Частицы в порошке агломерированы с размерами агломератов до 10 мкм. Среднеарифметический размер частиц 70-80 нм. Насыпная плотность - около 0,66 г/см³. Площадь удельной поверхности, измеренная методом БЭТ - 4.5- 6.0 м2/г. Рентгенофазовый анализ показывает, что материал представляет собой чистый кристаллический никель с ГЦК решеткой и параметром а = 3,522 - 3,524 Å. Электронная микроскопия высокого разрешения свидетельствует о наличии многочисленных кристаллических дефектов. После контакта с воздухом порошок никеля воспламеняется низкокалорийным источником тепла (спиртовка) в течение 5 с. Линейная скорость фронта горения 0,79 мм/с, протяженность фронта горения 22 - 23 мм. Точка плавления 1452°С.
Порошок никеля может найти применение в катализе и материаловедении; в получении эластичного слоистого электропроводящего материала; получении мелкодисперсных покрытий на керамических, кварцевых, металлических, пластмассовых, композиционных изделиях любой сложности формы; в изготовлении конденсаторов; в электронной промышленности.

ОПАСНОСТЬ

Легковоспламеняющийся металлический порошок. Обладает общетоксическим и раздражающим действием. Предельно допустимая среднесуточная концентрация ПДК = 0,001 мг/м3. Взрывобезопасен.

УГРОЗА ДЛЯ ЗДОРОВЬЯ

Неприятная пыль. При вдыхании в больших количествах вызывает головную боль, повышение температуры, головокружение, слабость. При попадании на слизистую оболочку глаз, может вызвать раздражение.

МЕРЫ ПРЕДОСТОРОЖНОСТИ В РАБОТЕ

Применять средства защиты как при работе с легко воспламеняющимися веществами. Применять респираторы. Не допускать нагрева выше 200°С
Мы предлагаем нашим партнерам:
  • Индивидуальный подход к заказу
  • Научно-технологическое сотрудничество
  • Систему скидок
  • Доставку продукции
Новости
4 Апреля 2019 Компания «ПЕРЕДОВЫЕ ПОРОШКОВЫЕ ТЕХНОЛОГИИ» успешно выполнила работы по третьему этапу проекта «НТИ - Развитие» (www.fasie.ru)
На третьем этапе выполнения проекта разработаны методы изготовления гранулированных термопластичных материалов на основе микро- и наночастиц сплавов 03Х17Н14М3, Ti-Al, ВТ-6, ВНЖ-90 и Al2O3 (фидстоков) и исследованы их физико-химические характеристики. Для получения гранулированных материалов на основе микро- и наночастиц сплава 03Х17Н14М3 выбран комбинированный метод, включающий получение мелкого гранулята обработкой частиц со структурой ядро-оболочка раствором полимеров и совмещение мелкого гранулята с расплавом полимеров. Для получения гранулированных материалов на основе микро- и наночастиц сплавов ВТ-6, Ti-Al, ВНЖ-90 и Al2O3 выбран метод введения частиц ядро-оболочка в расплав полимеров. Определены режимы формования сложнопрофильных деталей из гранулированных материалов и исследованы их механические характеристики. Установлено, что по микротвердости, пределу прочности при растяжении и изгибе образцы сложнопрофильных деталей близки характеристикам соответствующих объемных материалов.
Разработка методов изготовления гранулированных материалов на основе микро- и наночастиц сплавов 03Х17Н14М3, Ti-Al, ВТ-6, ВНЖ-90 и Al2O3, а также литье под давлением сложнопрофильных деталей с требуемыми механическими характеристиками позволяет приступить к выполнению следующего этапа работ - разработке лабораторного технологического регламента получения гранул из частиц со структурой ядро-оболочка, наработке и исследованию гранулированных материалов. Проект выполняется при поддерже Фонда содействия инновациям (www.fasie.ru).
21 Ноября 2018 Компания "ПЕРЕДОВЫЕ ПОРОШКОВЫЕ ТЕХНОЛОГИИ" индустриальный партнер проекта
ООО «ПЕРЕДОВЫЕ ПОРОШКОВЫЕ ТЕХНОЛОГИИ» индустриальный партнер ИФМП СО РАН по проекту ПНИ по теме: «Разработка и создание нового поколения бимодальных металлопорошковых композиций на основе нано- и микрочастиц жаропрочных, жаростойких, коррозионностойких сплавов для аддитивных технологий синтеза деталей сложных систем» ФЦП «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2014 - 2020 годы» в рамках Соглашения 14.604.21.0158.
В настоящее время завершается выполнение второго этапа проекта "Определение условий синтеза бимодальных порошков на основе нано- и микрочастиц жаропрочных, жаростойких, коррозионностойких сплавов для аддитивных технологий синтеза деталей сложных систем». Успешно выполнены работы:
•    Установлены электрофизические параметры получения бимодальных порошков сплавов ХН70Ю, ХН60ВТ и 316L.
•    Исследованы физико-химические и технологические характеристики экспериментальных образцов бимодальных порошков жаропрочных, жаростойких, коррозионностойких сплавов для аддитивного изготовления деталей сложных систем.
•     Исследована возможность использования бимодальных порошков для аддитивного изготовления деталей сложной пространственной структуры методом селективного лазерного плавления.
•    Разработан метод микрокапсуляции бимодальных порошков органическими соединениями для создания защитного слоя на поверхности частиц. Микрокапсуляция препятствует окислению бимодальных порошков, способствует увеличению скорости спекания образцов и позволяет получать изделия с плотностью, близкой к теоретической плотности сплавов.