нанопорошок Никеля (Ni)

никель_.jpg

ОБРАЗЕЦ СЕРТИФИКАТА

Разработан компанией ООО «ПЕРЕДОВЫЕ ПОРОШКОВЫЕ ТЕХНОЛОГИИ», Россия. Соответствует ТУ 1791-003-36280340-2008

ИДЕНТИФИКАЦИЯ ПРОДУКТА

ЭТИКЕТКА ИДЕНТИФИКАЦИИ: торговое наименование: НАНОПОРОШОК НИКЕЛЯ; химическая формула: Ni. Нанопорошок получен методом электрического взрыва проводника в атмосфере аргона и упакован в стеклянные ампулы в инертной атмосфере.

ХИМИЧЕСКИЙ СОСТАВ

Порошок содержит не менее 99,8 % масс. металлического никеля. Элементный состав материала: Ni = 99,758%, Mg = 0,041%, Al = 0,058%, Si = 0,049%, S = 0,005%, Ti = 0,010% Fe = 0,047%, Co = 0,032%. Интенсивности максимумов примесных элементов небольшие по сравнению с пиками изотопов никеля, что указывает на высокую чистоту порошка. Химический состав определялся путем элетроннозондового микроанализа при Z>10 и пороге чувствительности 0,1-0,05 % отн., при этом в порошке не обнаружено примесей. Кислород не обнаружен при 20 измерениях с порогом чувствительности ≥ 0,5% масс. Содержание кислорода, определенное при импульсом восстановительном плавлении в потоке инертного газа (гелий) с использованием эталона - стали с 0.172 % масс. кислорода, составило 0.6% масс.

ФИЗИЧЕСКИЕ И ХИМИЧЕСКИЕ СВОЙСТВА

Внешний вид и цвет: порошок темно-серого цвета. Форма отдельных частиц сферическая. Частицы в порошке агломерированы с размерами агломератов до 10 мкм. Среднеарифметический размер частиц 70-80 нм. Насыпная плотность - около 0,66 г/см³. Площадь удельной поверхности, измеренная методом БЭТ - 4.5- 6.0 м2/г. Рентгенофазовый анализ показывает, что материал представляет собой чистый кристаллический никель с ГЦК решеткой и параметром а = 3,522 - 3,524 Å. Электронная микроскопия высокого разрешения свидетельствует о наличии многочисленных кристаллических дефектов. После контакта с воздухом порошок никеля воспламеняется низкокалорийным источником тепла (спиртовка) в течение 5 с. Линейная скорость фронта горения 0,79 мм/с, протяженность фронта горения 22 - 23 мм. Точка плавления 1452°С.
Порошок никеля может найти применение в катализе и материаловедении; в получении эластичного слоистого электропроводящего материала; получении мелкодисперсных покрытий на керамических, кварцевых, металлических, пластмассовых, композиционных изделиях любой сложности формы; в изготовлении конденсаторов; в электронной промышленности.

ОПАСНОСТЬ

Легковоспламеняющийся металлический порошок. Обладает общетоксическим и раздражающим действием. Предельно допустимая среднесуточная концентрация ПДК = 0,001 мг/м3. Взрывобезопасен.

УГРОЗА ДЛЯ ЗДОРОВЬЯ

Неприятная пыль. При вдыхании в больших количествах вызывает головную боль, повышение температуры, головокружение, слабость. При попадании на слизистую оболочку глаз, может вызвать раздражение.

МЕРЫ ПРЕДОСТОРОЖНОСТИ В РАБОТЕ

Применять средства защиты как при работе с легко воспламеняющимися веществами. Применять респираторы. Не допускать нагрева выше 200°С
Мы предлагаем нашим партнерам:
  • Индивидуальный подход к заказу
  • Научно-технологическое сотрудничество
  • Систему скидок
  • Доставку продукции
Новости
19 Мая 2020 КОМПАНИЯ «ПЕРЕДОВЫЕ ПОРОШКОВЫЕ ТЕХНОЛОГИИ» (ТОМСК, РФ) ИЗГОТАВЛИВАЕТ НАНОПОРОШКИ ОКСИДА МЕДИ И ЦИНКА С АНТИМИКРОБНЫМ ДЕЙСТВИЕМ
КОМПАНИЯ «ПЕРЕДОВЫЕ ПОРОШКОВЫЕ ТЕХНОЛОГИИ» (ТОМСК, РФ) ИЗГОТАВЛИВАЕТ НАНОПОРОШКИ ОКСИДА МЕДИ И ЦИНКА С АНТИМИКРОБНЫМ ДЕЙСТВИЕМ

Пандемия коронавируса COVID-19 показала, что существует неотложная потребность в эффективных мерах по предотвращению распространения вирусных инфекций различных нозологий. Последние случаи вспышек вируса атипичной пневмонии, птичьего гриппа, гриппа H1N1, и наконец, коронавируса COVID-19 показали, что высокоэффективные бытовые технические средства, позволяющие прервать пути  распространения инфекций, отсутствуют. На данный момент известно, что есть два главных пути передачи вирусов. Во-первых, это воздушно-капельный механизм передачи инфекции, во-вторых, это контакт человека с зараженными поверхностями.
В настоящее время для прерывания путей передачи вирусов в быту в качестве индивидуальных защитных средств используются маски, защищающие органы дыхания, перчатки и различные антисептики, которыми обрабатываются руки и окружающие предметы и поверхности.
Защитные маски позволяют уменьшить распространение респираторных вирусов, особенно при использовании в замкнутом пространстве или при тесном контакте с человеком с симптомами заражения [1, 2]. Однако сами маски также могут быть источником инфекции [3]. Маска примерно через два часа становится влажной и уже в ней начинают размножаться микроорганизмы. По мнению ВОЗ, маски не гарантируют защиты от COVID-19. Установлено, что эффективность хирургических масок даже самого высокого класса защиты FFP3 недостаточна (гриппом заражается не менее 23 % медицинских сестер, носивших хирургические маски класса FFP3).
Вирус COVID-19 передается не только воздушно-капельным, но и контактным путем, и может сохраняться на поверхностях до 72 часов. Поэтому другой стороной вышеуказанной проблемы является передача вирусов, в т.ч. COVID-19, в лечебных учреждениях через медицинскую одежду, постельное белье, корпуса медицинского оборудования и др.
Одним из путей решений вышеуказанных проблем является придание натуральным и искусственным, в т.ч. медицинским, материалам и поверхностям антисептических свойств, например, с помощью биоцидных наночастиц. Волокна, импрегнированные биоактивными наночастицами, проявляют биоцидные свойства – антибактериальные, противогрибковые, противовирусные [4]. В большинстве современных исследований в области применения наночастиц для уничтожения патогеннов, основное внимание уделяется однокомпонентным наноматериалам (например, наночастицам оксида меди CuO, оксида цинка ZnO, серебра Ag). До недавнего времени серебро оставалось наиболее популярным материалом, который предлагался как эффективное антимикробное средство. Однако последние исследования показывают, что серебро при применении в действующих концентрациях оказывает цитотоксический эффект на клетки организма человека [5]. Кроме того серебро имеет высокую стоимость, что приведет к заметному увеличению цены конечной продукции. Поэтому сейчас основное внимание уделяется применению в качестве бактерицидных и противовирусных материалов наночастицам CuO и ZnO, которые практически малотоксичны для человека.
Например, импрегнация биоактивных наночастиц оксида меди в фильтрующий материал позволяет придать одноразовым респираторным маскам мощные биоцидные свойства без изменения их барьерных свойств [6]. При контакте с вирусом ионы меди вызывают массовое повреждение компонентов клеточной стенки, вирусных генов и ключевых белков [7].
Таким образом, с использованием нанопорошков оксидов меди и цинка, возможно разработать ряд продуктов, позволяющих прервать пути передачи вирусов в быту и в медицинских учреждениях – лицевых масок, одежды медицинского персонала, перчаток, больничных простыней, корпусов медицинского оборудования, контейнеры для хранения продуктов, клавиатуру компьютеров, корпуса мобильных телефонов и др.

Компания «ПЕРЕДОВЫЕ ПОРОШКОВЫЕ ТЕХНОЛОГИИ» может изготовить нанопорошки оксидов меди и цинка для разработки новых антимикробных материалов.

1.  Jefferson T, Foxlee R, Del Mar C, Dooley L, Ferroni E, et al. (2008) Physicalinterventions to interrupt or reduce the spread of respiratory viruses: systematicreview. BMJ 336: 77–80.
2. Jefferson T, Foxlee R, Del Mar C, Dooley L, Ferroni E, et al. (2007) Interventions for the interruption or reduction of the spread of respiratoryviruses. Cochrane Database Syst Rev 6207.
3. Zhiqing L. et al. Surgical masks as source of bacterial contamination during operative procedures //Journal of orthopaedic translation.2018; 14: 57-62.
4. Borkow, G. and Gabbay, J. (2004). Putting Copper into Action:Copper-impregnated Products with Potent Biocidal Activities, FASEB Jounal,18(14): 1728–1730.
5. Akter M. et al. A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives //Journal of advanced research. – 2018. – Т. 9. – С. 1-16.
6. Gadi Borkow et al. A Novel Anti-Influenza Copper Oxide Containing Respiratory Face Mask // PLoS ONE, June 2010, Volume 5, Issue 6.
7. Borkow & Gabbay (2005) Copper as a biocidal tool. Current Medicinal Chemistry12:2163-75


ООО "ПЕРЕДОВЫЕ ПОРОШКОВЫЕ ТЕХНОЛОГИИ"
Адрес: 634055, Российская Федерация, Томск, проспект Академический, 8/8
Телефон/Факс: +7 (3822) 28-68-72 , 8-961-888-16-24
http://www.nanosized-powders.com